If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81-8x^2=0
a = -8; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-8)·81
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-8}=\frac{0-36\sqrt{2}}{-16} =-\frac{36\sqrt{2}}{-16} =-\frac{9\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-8}=\frac{0+36\sqrt{2}}{-16} =\frac{36\sqrt{2}}{-16} =\frac{9\sqrt{2}}{-4} $
| 22-y=16 | | x^2+49=0 | | 3f=+f | | 12x+1/3=5x+2 | | 1-3/2x=x-4 | | 14/15c+1/5c=6/7 | | 121d-84=0 | | 3a-12=2a+5 | | 2x+3/5=7/2 | | 7x-10=-x+14 | | 5a-3=-5a+17 | | 5a-3=-5a | | 32+6x+2x=180 | | 5a-9=3a-1 | | -6a+5a=55 | | (4x-25°)+(x-10)°+(x+5)°=180° | | 3x*2=4x | | t/7-5=3 | | 7/10×x=280 | | p=44+56.95 | | -17+3x=-4(x-1) | | -6y+9=-9 | | 10x-3x-3=18 | | 5x+1=3x-$ | | 1/289=17x-3 | | 12-4x=5x-6 | | 11+19+9x=120 | | -6(t+5)=-36 | | -6(t+5)=36 | | 10x^2-19x-117=0 | | x^6=244.140625 | | 2-t/3=-1 |